Skip to main content

Exploring Calculus with Maple Introductory Calculus

Section 15.2 Indefinite Integrals and Antiderivatives

The Int() and int() commands may also be used for indefinite integrals. As mentioned in Definite Integrals, the inert command Int() displays the integral, and int() evaluates the integral directly. Either command may be used for finding an antiderivative of a given function.
> Int(sin(x), x);
\begin{equation*} \displaystyle \int \!\sin \left( x \right) {dx} \end{equation*}
> int(sin(x), x);
\begin{equation*} \displaystyle -\cos \left( x \right) \end{equation*}
Notice that Maple does not include the addition of the constant of integration \(+C\) when evaluating indefinite integrals.
The inert Int() command can be combined with the value() command to display the integral symbolically and then compute the indefinite integral.
> p(x) := 1/sqrt(1 + x^2);
\begin{equation*} \displaystyle p\, := \,x\mapsto {\frac {1}{\sqrt {{x}^{2}+1}}} \end{equation*}
> Int(p(x), x); value(%);
\begin{equation*} \displaystyle \int \! \left( \sqrt{{x}^{2}+1} \right) ^{-1}{dx} \end{equation*}

Aside

\begin{equation*} \displaystyle \arcsinh \left( x \right) \end{equation*}