Skip to main content
Contents Index
Dark Mode Prev Up Next
\(\usepackage{siunitx}
\newcommand{\lrp}[1]{\left(#1\right)}
\newcommand{\lrb}[1]{\left[#1\right]}
\newcommand{\lrbrace}[1]{\left\lbrace#1\right\rbrace}
\newcommand{\abs}[1]{\left|#1\right|}
\newcommand{\dint}{\displaystyle\int}
\newcommand{\defint}[2]{\dint^{#2}_{#1}}
\newcommand{\dlim}[2]{\displaystyle\lim_{#1\rightarrow #2}\,}
\newcommand{\dydx}{\dfrac{dy}{dx}}
\newcommand{\ddx}{\tfrac{d}{dx}}
\newcommand{\dddx}{\dfrac{d}{dx}}
\newcommand{\ifsol}[1]{\ifprintanswers{#1}\fi}
\newcommand{\Nat}{\mathbb{N}}
\newcommand{\Whole}{\mathbb{W}}
\newcommand{\Int}{\mathbb{Z}}
\newcommand{\Rat}{\mathbb{Q}}
\newcommand{\Real}{\mathbb{R}}
\newcommand{\Complex}{\mathbb{C}}
\DeclareMathOperator\arcsinh{arcsinh}
\DeclareMathOperator\arccosh{arccosh}
\DeclareMathOperator\arctanh{arctanh}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\newcommand{\sfrac}[2]{{#1}/{#2}}
\)
Section 12.2 Using Function Notation
If you have properly defined a function
\(f(x)\text{,}\) you may also make use of the familiar
\(f'(x)\) notation used in class.
\begin{equation*}
\displaystyle f\, := \,x\mapsto \sin \left( x \right) +{x}^{2}
\end{equation*}
\begin{equation*}
\displaystyle \cos \left( x \right) +2\,x
\end{equation*}
This notation is especially useful for evaluating the derivative at a value, without using the
subs() command separately.
Aside While using
\(m\) is a common choice for slope, it is a good idea to avoid overusing it in your Maple worksheet. You may wish to use
\(m1\text{,}\) \(m2\text{,}\) etc. when calculating the slopes of many tangent lines.
\begin{equation*}
\displaystyle slope\mathit{1}\, := \, 1
\end{equation*}
\begin{equation*}
\displaystyle slope\mathit{2}\, := \, -1 + 2\pi
\end{equation*}
Higher derivatives are also notated in much the same way as in class.
\begin{equation*}
\displaystyle -\sin \left( x \right) +2
\end{equation*}
Rather than using a string of tick marks, we use a raised exponent in parentheses to specify the
\(n\) th derivative. This notation can only be used in 2D Math mode.
\begin{equation*}
\displaystyle -\cos \left( x \right)
\end{equation*}