Skip to main content

Exploring Calculus with Maple Introductory Calculus

Section 12.2 Using Function Notation

If you have properly defined a function \(f(x)\text{,}\) you may also make use of the familiar \(f'(x)\) notation used in class.
> f(x) := sin(x) + x^2;
\begin{equation*} \displaystyle f\, := \,x\mapsto \sin \left( x \right) +{x}^{2} \end{equation*}
> f'(x);
\begin{equation*} \displaystyle \cos \left( x \right) +2\,x \end{equation*}
This notation is especially useful for evaluating the derivative at a value, without using the subs() command separately.

Aside

> slope1 := f'(0);
\begin{equation*} \displaystyle slope\mathit{1}\, := \, 1 \end{equation*}
> slope2 := f'(Pi);
\begin{equation*} \displaystyle slope\mathit{2}\, := \, -1 + 2\pi \end{equation*}
Higher derivatives are also notated in much the same way as in class.
> f''(x);
\begin{equation*} \displaystyle -\sin \left( x \right) +2 \end{equation*}
Rather than using a string of tick marks, we use a raised exponent in parentheses to specify the \(n\)th derivative. This notation can only be used in 2D Math mode.
> f⁽³⁾(x);
\begin{equation*} \displaystyle -\cos \left( x \right) \end{equation*}