Skip to main content

Exploring Calculus with Maple Introductory Calculus

Section 9.6 Functions of More than One Variable

We can also define functions of multiple variables and use the notation the same way as one variable functions.
> g(x,y) := sin(x) - cos(y);
\begin{equation*} \displaystyle g\, := \,( {x,y} )\mapsto \sin \left( x \right) -\cos \left( y \right) \end{equation*}
This function may be evaluated at a point, given as an ordered pair:
> g(0, Pi);
\begin{equation*} \displaystyle 1 \end{equation*}
An example of a function of more than one variable is the volume of a circular cylinder.
> cylindervol(r,h) := Pi*r^2*h;
\begin{equation*} \displaystyle cylindervol\, := \,( {r,h} )\mapsto \pi\,{r}^{2}h \end{equation*}
> cylindervol(3,5);
\begin{equation*} \displaystyle 45\,\pi \end{equation*}